Mr. Renwick's Physics 11 Newton's First and Third Laws

Learning Intentions

- Learn Newton's First and Third Laws of Motion.
- Learn what causes the normal force.
- Learn how to calculate the force of friction and the coefficient of friction.

Definitions and Formulas

_____·

1.	Newt	Newton's First Law: If the net force on an object is,				remain	
	at	at or will continue in uniform motion in a					
	a.	Also known as the Law of					
2.	Newton's Third Law: In every interaction between two objects, the forc						
	exert	ed on one object is	and	to t	ne	_ force	
	on the other object.						
	a.	Also known as the Law of		and	<u> </u>		
3.	The force is the "pushing" force that arises when two surfaces are						
	pushed together.						
	a.	The force is caused by		of th	ne electrons on t	he two	
		surfaces.					
	b.	A normal line is	_ (at a	degree angle) to a given surfa	ice.	

c. If there is too much force applied against a surface, the surface will

Mr. Renwick's Physics 11 Newton's First and Third Laws

4. ______ is the "pulling" force that acts ______ the motion (or intended

motion) of an object.

- 5. In Physics 11, we use a very simple mathematical model for the incredibly complex interaction between the two surfaces. The ______ of _____ friction is used between two non-moving surfaces, and the ______ of _____ friction is used when the two surfaces are sliding past each other.
 - a. The ______ of ______ friction is always larger than the ______ of ______ friction.
 - b. In more advanced ______ (the study of friction), Strybeck curves are used to calculate the coefficient of friction. In this situation, the coefficient of friction depends on the ______ of the two interacting surfaces.

 The ______ phenomenon can causes objects to stutter or jerk when the object is at the threshold of movement.

Questions

- 1. A 25 kg child sits on the ground, watching clouds float by at 12 km/h. Draw a free-body diagram of the child. What is the net force on the child?
- A 10 kg cat is sliding to the right at a constant velocity of 3 m/s [E] across a frictionless floor. Draw a free-body diagram of the cat. What is the net force on the cat?
- 3. A fully-fueled Airbus A380 plane has a mass of 570,000 kg. Shortly after takeoff, it is flying at a constant velocity of 1,020 km/h [W]. Draw a free-body diagram of the plane. What is the net force on the plane?
- 4. A snowboarder rides down a 35 degree slope at a constant velocity of 42 km/h. Draw a free-body diagram of the snowboarder. What is the net force on the snowboarder?
- 5. A box with a weight of 3<u>0</u>0 N is sitting on the floor. Someone pushes on the box with a horizontal force of 2<u>0</u> N, causing it to almost start moving. Draw a free body diagram of the box. What is the coefficient of static friction between the box and the floor?
- 6. Is it possible for the action force of boxer A hitting boxer B to exceed the reaction force of Boxer B pushing back on boxer A? How does a boxer win a fight?
- 7. A sailor is adrift in the middle of the ocean, on a windless day. He makes a fan, and creates a southerly breeze into his sail. In what direction will he move?
- 8. A scientist claims he can cause the Earth to move by jumping up and down. Is he correct?
- In Stephen Seagal's 2016 movie "Contract to Kill", a machine gun is mounted on a small drone copter. Why would this not work in real life?
 https://youtu.be/9mYwPuSOST8?t=1280 (watch from 21:20 to 22:40)

Mr. Renwick's Physics 11 Newton's First and Third Laws

Answers

- 1. $F_{net} = 0 N$
- 2. $\mathbf{F}_{net} = 0 N$
- 3. $F_{net} = 0 N$
- 4. $F_{net} = 0 N$
- 5. $\mu = 0.067$
- 6. No. They win a fight by exerting force on parts of their body that can take a lot of force (their hands) and on parts of their opponent's body that cannot take a lot of force (the head and stomach)
- 7. He will not move.
- 8. Yes, but the movement will be negligible.
- 9. The reaction force backwards from firing a gun would destabilize the drone.