Names:	and	
	Block:	

Learning Intentions

 Learn the relationship between the force in an elastic band and the change in the length of the elastic band.

Materials

- 1. Metal stand
- 2. 1 elastic band
- 3. 20 N spring scale
- 4. Ruler

Procedures

- 1. Put the metal stand into the holder on the desk.
- 2. Put the elastic band around the metal stand.
- 3. Attach the spring scale, and pull it so that the elastic band is at its full, unstretched length.
- 4. Place the ruler so that it can measure the change in length of the elastic band.
- 5. Pull on the spring scale until the elastic band has increased in length to 3 cm. Record the measured force. Repeat for 5 data points, up to 15 cm.
- 6. Using Excel, graph the force of tension versus the change in length of the elastic.
- 7. Using Excel, add a best-fit line to the graph. The slope of this line represents k, the constant of elasticity.

Page 1 of 2 See over →

Data

Circle the type of elastic band #19 #32 #64

Change in length of elastic	Tension in elastic
0.0 cm	0.0 N
3.0 cm	
6.0 cm	
9.0 cm	
12.0 cm	
15.0 cm	

Questions

- 1. Draw a free body diagram of the point where the elastic band touches the spring scale.
- 2. Using Excel, graph the spring force vs. change in length for the elastic band.
- 3. Using Excel, find the equation of the best-fit line for this graph.
- 4. What is the spring constant for your elastic?